Generalized verison of Fourier series for non-periodic functions. Transforms a time-domain function into frequency-domain representation.
Fourier transforms are widely used in applied mathematics, physics, and engineering. Specifically:
Signal processing
Used in communications, image processing, sound analysis
Quantum mechanics
The wave function of a particle in position space and its momentum representation are related via Fourier transforms.
Heat transfer and diffusion
Fourier transforms provide exact solutions for diffusion problems on infinite domains.
Wave propgation
Solutions to the wave equation, describing how signals travel in unbounded media.
If :
f f f is absolutely integrable over ( − ∞ , ∞ ) (-\infty, \infty) ( − ∞ , ∞ ) .
f f f and f ′ f' f ′ are piecewise continuous on every finite interval.
Then :
f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t d ω f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega t}\text{d}\omega
f ( t ) = 2 π 1 ∫ − ∞ ∞ F ( ω ) e iω t d ω
Where:
F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}\text{d}t
F ( ω ) = ∫ − ∞ ∞ f ( t ) e − iω t d t
Provided that the integral converges.
At a point of discontinuity of f f f , the integral converges to average of left and right sided limits.
Suppose f f f is a function defined for all real numbers and is absolutely integrable over ( − ∞ , ∞ ) (-\infty, \infty) ( − ∞ , ∞ ) .
F { f ( t ) } = F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t \mathcal{F}\{f(t)\} = F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}\text{d}t
F { f ( t )} = F ( ω ) = ∫ − ∞ ∞ f ( t ) e − iω t d t
If the above integral diverges, Fourier transform of f f f is not defined.
f ( t ) f(t) f ( t ) F ( ω ) F(\omega) F ( ω ) 1 1 1 2 π δ ( ω ) 2\pi \delta(\omega) 2 π δ ( ω ) u ( t ) exp ( − α t ) u(t) \exp(-\alpha t) u ( t ) exp ( − α t ) 1 α + i ω \dfrac{1}{\alpha + i\omega} α + iω 1 { 1 , − α ≤ t ≤ α 0 , otherwise \begin{cases} 1,& -\alpha \le t \le\alpha\\0,& \text{otherwise}\end{cases} { 1 , 0 , − α ≤ t ≤ α otherwise 2 sin ( ω α ) ω \dfrac{2\sin(\omega \alpha)}{\omega} ω 2 sin ( ω α ) u ( t ) u(t) u ( t ) π δ ( ω ) − i ω \pi\delta(\omega) - \dfrac{i}{\omega} π δ ( ω ) − ω i δ ( t ) \delta(t) δ ( t ) 1 1 1 δ ( t − a ) \delta(t - a) δ ( t − a ) exp ( − i ω a ) \exp (-i\omega a) exp ( − iωa ) cos ( a t ) \cos(at) cos ( a t ) π ( δ ( ω + a ) + δ ( ω − a ) ) \pi\big(\delta(\omega + a) + \delta(\omega - a)\big) π ( δ ( ω + a ) + δ ( ω − a ) ) sin ( a t ) \sin(at) sin ( a t ) π i ( δ ( ω − a ) − δ ( ω + a ) ) \dfrac{\pi}{i}\big(\delta(\omega - a) - \delta(\omega + a)\big) i π ( δ ( ω − a ) − δ ( ω + a ) ) exp ( − α ∣ t ∣ ) \exp(-\alpha \lvert t \rvert) exp ( − α ∣ t ∣) 2 α α 2 + ω 2 \dfrac{2\alpha}{\alpha^{2} + \omega^{2}} α 2 + ω 2 2 α sgn ( t ) \operatorname{sgn}(t) sgn ( t ) 2 i ω \dfrac{2}{i\omega} iω 2 1 t \dfrac{1}{t} t 1 − i π sgn ( ω ) -i\pi\,\operatorname{sgn}(\omega) − iπ sgn ( ω ) exp ( − α t 2 ) \exp(-\alpha t^{2}) exp ( − α t 2 ) π α e − ω 2 / ( 4 α ) \sqrt{\dfrac{\pi}{\alpha}}\,e^{-\omega^{2}/(4\alpha)} α π e − ω 2 / ( 4 α )
Here A ∈ R , α > 0 A \in \mathbb{R}, \alpha \gt 0 A ∈ R , α > 0 are constants.
sgn ( t ) = { 1 , t > 0 0 , t = 0 − 1 , t < 0 \operatorname{sgn}(t)=\begin{cases}
1, & t>0\\
0, & t=0\\
-1, & t<0
\end{cases}
sgn ( t ) = ⎩ ⎨ ⎧ 1 , 0 , − 1 , t > 0 t = 0 t < 0
c f ( t ) + g ( t ) = c F ( ω ) + G ( ω ) \mathcal{cf(t) + g(t)} = cF(\omega) + G(\omega)
c f ( t ) + g ( t ) = c F ( ω ) + G ( ω )
Aka. 1st shift.
F { e i a t f ( t ) } = F ( ω − a ) \mathcal{F}\{e^{iat}f(t)\}=F(\omega-a)
F { e ia t f ( t )} = F ( ω − a )
Aka. 2nd shift.
F { f ( t − t 0 ) } = e − i ω t 0 F ( ω ) \mathcal{F}\{f(t-t_0)\}=e^{-i\omega t_0}F(\omega)
F { f ( t − t 0 )} = e − iω t 0 F ( ω )
Similar to in Laplace Transform . When α > 0 \alpha \gt 0 α > 0 :
F { f ( α t ) } = 1 α F ( ω α ) \mathcal{F}\{f(\alpha t)\}=\frac{1}{\alpha}F\left(\frac{\omega}{\alpha}\right)
F { f ( α t )} = α 1 F ( α ω )
F { f ( − t ) } = F ( − ω ) \mathcal{F}\{f(-t)\}=F(-\omega)
F { f ( − t )} = F ( − ω )
F { f ( t ) ‾ } = F ( − ω ) ‾ \mathcal{F}\{\overline{f(t)}\} = \overline{F(-\omega)}
F { f ( t ) } = F ( − ω )
Suppose f f f is n n n -times differentiable function. And ∀ i ∈ Z ∪ [ 0 , n ] , lim t → ± ∞ f ( i ) ( t ) = 0 \forall i \in \mathbb{Z}\cup [0,n], \lim\limits_{t \to \pm \infty} f^{(i)}(t) = 0 ∀ i ∈ Z ∪ [ 0 , n ] , t → ± ∞ lim f ( i ) ( t ) = 0 .
F { d n f ( t ) d t n } = ( i ω ) n F ( ω ) \mathcal{F}\left\{\frac{\text{d}^n f(t)}{\text{d}t^n} \right\}=(i\omega)^n F(\omega)
F { d t n d n f ( t ) } = ( iω ) n F ( ω )
F { t f ( t ) } = i d F ( ω ) d ω \mathcal{F}\{t f(t)\}= i\frac{dF(\omega)}{d\omega}
F { t f ( t )} = i d ω d F ( ω )
Similar to in Laplace Transform . When α > 0 \alpha \gt 0 α > 0 :
F { f ∗ g } = F ( ω ) G ( ω ) \mathcal{F}\{f*g\}=F(\omega)G(\omega)
F { f ∗ g } = F ( ω ) G ( ω )
F { f ⋆ g } = F ( ω ) G ( − ω ) \mathcal{F}\{f\star g\}=F(\omega)G(-\omega)
F { f ⋆ g } = F ( ω ) G ( − ω )
If F { f ( t ) } = F ( ω ) \mathcal{F}\{f(t)\}=F(\omega) F { f ( t )} = F ( ω ) then F { F ( t ) } = 2 π f ( − ω ) \mathcal{F}\{F(t)\}=2\pi f(-\omega) F { F ( t )} = 2 π f ( − ω ) .
Using Euler expansion:
F ( ω ) = ∫ − ∞ ∞ f ( t ) cos ( ω t ) d t − i ∫ − ∞ ∞ f ( t ) sin ( ω t ) d t F(\omega)=\int_{-\infty}^{\infty} f(t)\cos(\omega t)\,\text{d}t - i\int_{-\infty}^{\infty} f(t)\sin(\omega t)\,\text{d}t
F ( ω ) = ∫ − ∞ ∞ f ( t ) cos ( ω t ) d t − i ∫ − ∞ ∞ f ( t ) sin ( ω t ) d t
If f ( t ) f(t) f ( t ) even: transform is real.
If f ( t ) f(t) f ( t ) odd: transform is purely imaginary.
Suppose f f f is defined on [ 0 , ∞ ) [0, \infty) [ 0 , ∞ ) .
Denoted by F c ( ω ) F_c(\omega) F c ( ω ) .
F c ( ω ) = ∫ 0 ∞ f ( t ) cos ( ω t ) d t F_c(\omega)=\int_0^\infty f(t)\cos(\omega t)\,\text{d}t
F c ( ω ) = ∫ 0 ∞ f ( t ) cos ( ω t ) d t
Inverse:
f ( t ) = 2 π ∫ 0 ∞ F c ( ω ) cos ( ω t ) d ω f(t)=\frac{2}{\pi}\int_0^\infty F_c(\omega)\cos(\omega t)\,\text{d}\omega
f ( t ) = π 2 ∫ 0 ∞ F c ( ω ) cos ( ω t ) d ω
Denoted by F s ( ω ) F_s(\omega) F s ( ω ) .
F s ( ω ) = ∫ 0 ∞ f ( t ) sin ( ω t ) d t F_s(\omega)=\int_0^\infty f(t)\sin(\omega t)\,\text{d}t
F s ( ω ) = ∫ 0 ∞ f ( t ) sin ( ω t ) d t
Inverse:
f ( t ) = 2 π ∫ 0 ∞ F s ( ω ) sin ( ω t ) d ω f(t)=\frac{2}{\pi}\int_0^\infty F_s(\omega)\sin(\omega t)\,\text{d}\omega
f ( t ) = π 2 ∫ 0 ∞ F s ( ω ) sin ( ω t ) d ω
Fourier transforms are used to solve PDEs, especially when the domain is infinite or semi-infinite (start at a point, but goes to infinity in one direction).
For one-dimensional heat flow:
∂ 2 θ ∂ x 2 = 1 k ∂ θ ∂ t \frac{\partial^2 \theta}{\partial x^2}=\frac 1k\frac{\partial \theta}{\partial t}
∂ x 2 ∂ 2 θ = k 1 ∂ t ∂ θ
Applying Fourier transform in x x x reduces PDE to ODE in t t t :
∂ Θ ∂ t = − k ω 2 Θ \frac{\partial \Theta}{\partial t} = -k\omega^2 \Theta
∂ t ∂ Θ = − k ω 2 Θ
Here Θ ( ω , t ) = F { θ ( x , t ) } \Theta(\omega,t) = \mathcal{F}\{\theta(x,t)\} Θ ( ω , t ) = F { θ ( x , t )} .
The above is a separable 1st order ODE. The solution is:
Θ ( ω , t ) = Θ ( ω , 0 ) e − k ω 2 t \Theta(\omega,t)=\Theta(\omega,0)e^{-k\omega^2 t}
Θ ( ω , t ) = Θ ( ω , 0 ) e − k ω 2 t
θ ( x , t ) = 1 2 π ∫ − ∞ ∞ Θ ( ω , 0 ) e − k ω 2 t e i ω x d ω \theta (x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Theta(\omega,0) e^{-k\omega^2 t} e^{i\omega x} \,\text{d}\omega
θ ( x , t ) = 2 π 1 ∫ − ∞ ∞ Θ ( ω , 0 ) e − k ω 2 t e iω x d ω
∂ 2 y ∂ t 2 = c 2 ∂ 2 y ∂ x 2 \frac{\partial^2 y}{\partial t^2}=c^2\frac{\partial^2 y}{\partial x^2}
∂ t 2 ∂ 2 y = c 2 ∂ x 2 ∂ 2 y
By applying Fourier transform w.r.t. x x x , it is converted to a second-order ODE:
∂ 2 Y ∂ t 2 + c 2 ω 2 Y = 0 \frac{\partial^2 Y}{\partial t^2} + c^2 \omega^2 Y = 0
∂ t 2 ∂ 2 Y + c 2 ω 2 Y = 0
Here Y ( ω , t ) = F y ( x , t ) ( ω ) Y(\omega,t) = \mathcal{F}{y(x,t)}(\omega) Y ( ω , t ) = F y ( x , t ) ( ω ) . The solution is:
Y = F f cos ( c ω t ) + F g sin ( c ω t ) c ω Y = F{f} \cos(c\omega t) + F{g}\frac{\sin(c \omega t)}{c\omega}
Y = F f cos ( c ω t ) + F g c ω sin ( c ω t )
∂ 2 y ∂ t 2 = c 2 ∂ 2 y ∂ x 2 \frac{\partial^2 y}{\partial t^2}=c^2\frac{\partial^2 y}{\partial x^2}
∂ t 2 ∂ 2 y = c 2 ∂ x 2 ∂ 2 y
Invert transform to obtain y(x,t).