Skip to content
Sahithyan's S3
1
Sahithyan's S3 — Differential Equations

Fourier Transform

Generalized verison of Fourier series for non-periodic functions. Transforms a time-domain function into frequency-domain representation.

Fourier transforms are widely used in applied mathematics, physics, and engineering. Specifically:

  • Signal processing
    Used in communications, image processing, sound analysis
  • Quantum mechanics
    The wave function of a particle in position space and its momentum representation are related via Fourier transforms.
  • Heat transfer and diffusion
    Fourier transforms provide exact solutions for diffusion problems on infinite domains.
  • Wave propgation
    Solutions to the wave equation, describing how signals travel in unbounded media.

If:

  • ff is absolutely integrable over (,)(-\infty, \infty).
  • ff and ff' are piecewise continuous on every finite interval.

Then:

f(t)=12πF(ω)eiωtdωf(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega t}\text{d}\omega

Where:

F(ω)=f(t)eiωtdtF(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}\text{d}t

Provided that the integral converges.

At a point of discontinuity of ff, the integral converges to average of left and right sided limits.

Suppose ff is a function defined for all real numbers and is absolutely integrable over (,)(-\infty, \infty).

F{f(t)}=F(ω)=f(t)eiωtdt\mathcal{F}\{f(t)\} = F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}\text{d}t

If the above integral diverges, Fourier transform of ff is not defined.

f(t)f(t)F(ω)F(\omega)
112πδ(ω)2\pi \delta(\omega)
u(t)exp(αt)u(t) \exp(-\alpha t)1α+iω\dfrac{1}{\alpha + i\omega}
{1,αtα0,otherwise\begin{cases} 1,& -\alpha \le t \le\alpha\\0,& \text{otherwise}\end{cases}2sin(ωα)ω\dfrac{2\sin(\omega \alpha)}{\omega}
u(t)u(t)πδ(ω)iω\pi\delta(\omega) - \dfrac{i}{\omega}
δ(t)\delta(t)11
δ(ta)\delta(t - a)exp(iωa)\exp (-i\omega a)
cos(at)\cos(at)π(δ(ω+a)+δ(ωa))\pi\big(\delta(\omega + a) + \delta(\omega - a)\big)
sin(at)\sin(at)πi(δ(ωa)δ(ω+a))\dfrac{\pi}{i}\big(\delta(\omega - a) - \delta(\omega + a)\big)
exp(αt)\exp(-\alpha \lvert t \rvert)2αα2+ω2\dfrac{2\alpha}{\alpha^{2} + \omega^{2}}
sgn(t)\operatorname{sgn}(t)2iω\dfrac{2}{i\omega}
1t\dfrac{1}{t}iπsgn(ω)-i\pi\,\operatorname{sgn}(\omega)
exp(αt2)\exp(-\alpha t^{2})παeω2/(4α)\sqrt{\dfrac{\pi}{\alpha}}\,e^{-\omega^{2}/(4\alpha)}

Here AR,α>0A \in \mathbb{R}, \alpha \gt 0 are constants.

sgn(t)={1,t>00,t=01,t<0\operatorname{sgn}(t)=\begin{cases} 1, & t>0\\ 0, & t=0\\ -1, & t<0 \end{cases} cf(t)+g(t)=cF(ω)+G(ω)\mathcal{cf(t) + g(t)} = cF(\omega) + G(\omega)

Aka. 1st shift.

F{eiatf(t)}=F(ωa)\mathcal{F}\{e^{iat}f(t)\}=F(\omega-a)

Aka. 2nd shift.

F{f(tt0)}=eiωt0F(ω)\mathcal{F}\{f(t-t_0)\}=e^{-i\omega t_0}F(\omega)

Similar to in Laplace Transform. When α>0\alpha \gt 0:

F{f(αt)}=1αF(ωα)\mathcal{F}\{f(\alpha t)\}=\frac{1}{\alpha}F\left(\frac{\omega}{\alpha}\right) F{f(t)}=F(ω)\mathcal{F}\{f(-t)\}=F(-\omega) F{f(t)}=F(ω)\mathcal{F}\{\overline{f(t)}\} = \overline{F(-\omega)}

Suppose ff is nn-times differentiable function. And iZ[0,n],limt±f(i)(t)=0\forall i \in \mathbb{Z}\cup [0,n], \lim\limits_{t \to \pm \infty} f^{(i)}(t) = 0.

F{dnf(t)dtn}=(iω)nF(ω)\mathcal{F}\left\{\frac{\text{d}^n f(t)}{\text{d}t^n} \right\}=(i\omega)^n F(\omega) F{tf(t)}=idF(ω)dω\mathcal{F}\{t f(t)\}= i\frac{dF(\omega)}{d\omega}

Similar to in Laplace Transform. When α>0\alpha \gt 0:

F{fg}=F(ω)G(ω)\mathcal{F}\{f*g\}=F(\omega)G(\omega) F{fg}=F(ω)G(ω)\mathcal{F}\{f\star g\}=F(\omega)G(-\omega)

If F{f(t)}=F(ω)\mathcal{F}\{f(t)\}=F(\omega) then F{F(t)}=2πf(ω)\mathcal{F}\{F(t)\}=2\pi f(-\omega).

Using Euler expansion:

F(ω)=f(t)cos(ωt)dtif(t)sin(ωt)dtF(\omega)=\int_{-\infty}^{\infty} f(t)\cos(\omega t)\,\text{d}t - i\int_{-\infty}^{\infty} f(t)\sin(\omega t)\,\text{d}t
  • If f(t)f(t) even: transform is real.
  • If f(t)f(t) odd: transform is purely imaginary.

Suppose ff is defined on [0,)[0, \infty).

Denoted by Fc(ω)F_c(\omega).

Fc(ω)=0f(t)cos(ωt)dtF_c(\omega)=\int_0^\infty f(t)\cos(\omega t)\,\text{d}t

Inverse:

f(t)=2π0Fc(ω)cos(ωt)dωf(t)=\frac{2}{\pi}\int_0^\infty F_c(\omega)\cos(\omega t)\,\text{d}\omega

Denoted by Fs(ω)F_s(\omega).

Fs(ω)=0f(t)sin(ωt)dtF_s(\omega)=\int_0^\infty f(t)\sin(\omega t)\,\text{d}t

Inverse:

f(t)=2π0Fs(ω)sin(ωt)dωf(t)=\frac{2}{\pi}\int_0^\infty F_s(\omega)\sin(\omega t)\,\text{d}\omega

Fourier transforms are used to solve PDEs, especially when the domain is infinite or semi-infinite (start at a point, but goes to infinity in one direction).

For one-dimensional heat flow:

2θx2=1kθt\frac{\partial^2 \theta}{\partial x^2}=\frac 1k\frac{\partial \theta}{\partial t}

Applying Fourier transform in xx reduces PDE to ODE in tt:

Θt=kω2Θ\frac{\partial \Theta}{\partial t} = -k\omega^2 \Theta

Here Θ(ω,t)=F{θ(x,t)}\Theta(\omega,t) = \mathcal{F}\{\theta(x,t)\}.

The above is a separable 1st order ODE. The solution is:

Θ(ω,t)=Θ(ω,0)ekω2t\Theta(\omega,t)=\Theta(\omega,0)e^{-k\omega^2 t} θ(x,t)=12πΘ(ω,0)ekω2teiωxdω\theta (x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Theta(\omega,0) e^{-k\omega^2 t} e^{i\omega x} \,\text{d}\omega 2yt2=c22yx2\frac{\partial^2 y}{\partial t^2}=c^2\frac{\partial^2 y}{\partial x^2}

By applying Fourier transform w.r.t. xx, it is converted to a second-order ODE:

2Yt2+c2ω2Y=0\frac{\partial^2 Y}{\partial t^2} + c^2 \omega^2 Y = 0

Here Y(ω,t)=Fy(x,t)(ω)Y(\omega,t) = \mathcal{F}{y(x,t)}(\omega). The solution is:

Y=Ffcos(cωt)+Fgsin(cωt)cωY = F{f} \cos(c\omega t) + F{g}\frac{\sin(c \omega t)}{c\omega} 2yt2=c22yx2\frac{\partial^2 y}{\partial t^2}=c^2\frac{\partial^2 y}{\partial x^2}

Invert transform to obtain y(x,t).