Skip to content
Sahithyan's S3
1
Sahithyan's S3 — Differential Equations

Laplace Transform

Converts a time-domain function f(t)f(t) into a frequency-domain function F(s)F(s).

F(s)=L{f(t)}=0estf(t)dtF(s) = \mathcal{L}\{ f(t) \} = \int_{0}^{\infty} e^{-st} f(t) \,\text{d}t

Mainly used to solve linear ODEs with initial conditions.

For all below-mentioned formulas, the Laplace transform of f(t)f(t), is denoted as F(s)F(s).

For n0n\ge 0 and s>0s \gt 0.

L{tn}=n!sn+1\mathcal{L} \{ t^n \} = \frac{n!}{s^{n+1}} L{eat}=1sa\mathcal{L} \{ e^{at} \} = \frac{1}{s-a} L{sin(at)}=as2+a2\mathcal{L} \{ \sin (at) \} = \frac{a}{s^2 + a^2} L{cos(at)}=ss2+a2\mathcal{L} \{ \cos (at) \} = \frac{s}{s^2 + a^2} L{sinh(at)}=as2a2\mathcal{L} \{ \sinh (at) \} = \frac{a}{s^2 - a^2} L{cosh(at)}=ss2a2\mathcal{L} \{ \cosh (at) \} = \frac{s}{s^2 - a^2} L{u(ta)}=eass\mathcal{L}\{u(t-a)\}= \frac{e^{-as}}{s} L{cf(t)+g(t)}=cL{f(t)}+L{g(t)}\mathcal{L} \{ cf(t) + g(t) \} = c\mathcal{L}\{ f(t) \} + \mathcal{L} \{ g(t) \}

Suppose F(s)F(s) is the Laplace transform of ff, where s>αs \gt \alpha.

L{eatf(t)}=F(sa)\mathcal{L} \{ e^{at} f(t) \} = F(s-a)

For s>α+as \gt \alpha + a.

L{f(αt)}=1αF(sα)\mathcal{L} \{ f(\alpha t) \} = \frac{1}{\alpha} F\left(\frac{s}{\alpha}\right) L{tnf(t)}=(1)ndndsnF(s)\mathcal{L} \{ t^n f(t) \} = (-1)^n \frac{\text{d}^n}{\text{d}s^n} {F(s)} L{1tf(t)}=sF(x)dx\mathcal{L} \left\{ \frac{1}{t} f(t) \right\} = \int_s^\infty F(x)\,\text{d}x L{u(ta)f(ta)}=easF(s)\mathcal{L}\{ u(t-a)f(t - a) \} = e^{-as}F(s)

Here uu is the unit step function.

L{f(t)}=sF(s)f(0)\mathcal{L} \{ f'(t) \} = s F(s) - f(0) L{f(t)}=s2F(s)sf(0)f(0)\mathcal{L} \{ f''(t) \} = s^2 F(s) - sf(0) - f'(0) L{f(n)(t)}=snF(s)k=0n1skf(n1k)(0)\mathcal{L} \{ f^{(n)}(t) \} = s^n F(s) - \sum_{k=0}^{n-1} s^k f^{(n - 1 - k)}(0) L{0tf(x)dx}=1sF(s)\mathcal{L} \left\{ \int_0^t f(x) \,\text{d}x \right\} = \frac{1}{s} F(s)

Provided that s0s \neq 0.

Suppose f(t)f(t) is a periodic function with period TT.

If the Laplace transform of f(t)f(t) exists then:

L{f(t)}=11esT0Testf(t)dt\mathcal{L}\{ f(t) \} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) \,\text{d}t