The process of converting a function of real variable t into a complex variable s.
F(s)=L{f(t)}=∫0∞e−stf(t)dt
For n≥0.
L{tn}=sn+1n!
L{eat}=s−a1
L{sin(at)}=s2+a2a
L{cos(at)}=s2+a2s
L{sinh(at)}=s2−a2a
L{cosh(at)}=s2−a2s
Properties
Linearity
L{cf(t)+g(t)}=cL{f(t)}+L{g(t)}
Shiting
Suppose F(s) is the Laplace transform of f, where s>α.
L{eatf(t)}=F(s−a)
For s>α+a.
Time scaling
L{f(αt)}=α1F(αs)
L{tnf(t)}=(−1)ndsndnF(s)
L{t1f(t)}=∫s∞F(x)dx
Time shifting
L{u(t−a)f(t−a)}=e−asF(s)
Here u is the unit step function.
Derivatives and Integrals
Suppose F(s) is the Laplace transform of f(t).
Derivative
L{f′(t)}=sL{f(t)}−f(0)
L{f′′(t)}=s2L{f(t)}−sf(0)−f′(0)
L{f(n)(t)}=snL{f(t)}−k=0∑n−1skfn−1−k(0)
Integral
L{∫0tf(x)dx}=s1F(s)
Provided that s=0.
Reverse of Laplace transform.
L{f(t)}=F(s)⟹L−1{F(s)}=f(t)
For periodic functions
Suppose f(t) is a periodic function with period T. If the laplace transform of f(t) exists then:
L{f(t)}=1−e−sT1∫0Te−stf(t)dt