Skip to content
Sahithyan's S3
1
Sahithyan's S3 — Engineering Thermodynamics

Energy Balance

Based on the 1st law, more specific equations are derived on a case by case basis.

When a thermodynamic system’s state and energy transfer changes with time.

When a thermodynamic system’s state constants with time. Net energy change in the system is zero.

Net energy transfer to a closed system is equal to the net increase in the system’s total energy.

ΔQΔW=ΔEsys=ΔU+ΔKE+ΔPEΔU=m(h2h1)ΔKE=12m(C22C12)ΔPE=mg(z2z1)\begin{equation} \nonumber \begin{split} \Delta Q - \Delta W & = \Delta E_{\text{sys}} = \Delta U + \Delta KE + \Delta PE \\ \Delta U & = m(h_2 - h_1) \\ \Delta KE & = \frac{1}{2}m \left(C_2^2 - C_1^2\right) \\ \Delta PE & = mg(z_2 - z_1) \end{split} \end{equation}

Here:

  • ΔQ\Delta Q - net heat transfer to the system
  • ΔW\Delta W - net work transfer from the system
  • ΔEsys\Delta E_{\text{sys}} - change in total energy
  • ΔU\Delta U - change in internal energy
  • ΔKE\Delta KE - change in kinetic energy
  • ΔPE\Delta PE - change in potential energy
  • h1,h2h_1, h_2 - specific enthalpy
  • mm - mass of the system
  • C1,C2C_1, C_2 - velocity of the system
  • gg - gravitational acceleration
  • z1,z2z_1, z_2 - elevation of the system

Total specific energy of a flow system:

θ=h+12C2+gz\theta = h + \frac{1}{2}C^2 + gz

Here:

  • θ\theta - total specific energy
  • h=u+Pνh = u + P\nu - enthalpy
  • uu - specific internal energy
  • PνP\nu - specific flow work
  • CC - velocity of the flow
  • gg - gravatitaional acceleration
  • zz - elevation of the flow system
QW+minθinmoutθout=ΔEsysQ - W + m_{\text{in}}\theta_{\text{in}} - m_{\text{out}}\theta_{\text{out}} = \Delta E_{\text{sys}}

Here:

  • QQ - heat transfer
  • WW - work transfer
  • minm_{\text{in}} - mass flow rate of the inlet
  • θin\theta_{\text{in}} - total specific energy of the inlet
  • moutm_{\text{out}} - mass flow rate of the outlet
  • θout\theta_{\text{out}} - total specific energy of the outlet
  • ΔEsys\Delta E_{\text{sys}} - change in total energy of the system

Used when an open system is in steady state.

qw=hehi+12(Ce2Ci2)+g(zezi)q - w = h_e - h_i + \frac{1}{2}\Big(C_e^2 - C_i^2\Big) + g(z_e - z_i)

Here:

  • qq - specific heat transfer
  • ww - specific work transfer
  • he,hih_e, h_i - specific enthalpy at the outlet and inlet
  • Ce,CiC_e, C_i - flow velocity at the outlet and inlet
  • gg - gravitational acceleration
  • ze,ziz_e,z_i - elevation at the outlet and inlet