Skip to content
Sahithyan's S3
1
Sahithyan's S3 — Differential Equations

Unit Step Function

u(t)={0,t<01,t0u(t)=\begin{cases} 0, & t<0\\ 1, & t\ge 0 \end{cases}

Consider:

f(t)={f1(t),a1t<a2f2(t),a2t<a3f(t)= \begin{cases} f_1(t), & a_1 \le t < a_2\\ f_2(t), & a_2 \le t < a_3\\ \vdots \end{cases}

f(t)f(t) can be expressed using unit step functions as:

f(t)=fi(t)[u(tai)u(tai+1)]f(t) = \sum f_i(t)\,\big[u(t-a_i) - u(t-a_{i+1})\big]

[u(tai)u(tai+1)][u(t-a_i) - u(t-a_{i+1})] is called a window. Each window ensures the function is active only inside the correct interval.