Skip to content
Sahithyan's S3
1
Sahithyan's S3 — Differential Equations

Inverse Laplace Transform

Reverse of Laplace transform. Denoted as L1{F(s)}\mathcal{L}^{-1} \{ F(s) \}.

L{f(t)}=F(s)    L1{F(s)}=f(t)\mathcal{L}\{ f(t) \} = F(s) \implies \mathcal{L}^{-1} \{ F(s) \} = f(t) L1{F(s+a)}=eatf(t)L^{-1}\{F(s+a)\} = e^{-at}f(t) L1{cF(s)+G(s)}=cL1{F(s)}+L1{G(s)}\mathcal{L}^{-1} \{ cF(s) + G(s) \} = c\mathcal{L}^{-1}\{ F(s) \} + \mathcal{L}^{-1} \{ G(s) \} L1{easF(s)}=u(ta)f(ta)L^{-1}\{e^{-as}F(s)\}=u(t-a)f(t-a)

For α>0\alpha \gt 0.

L1{F(αs)}=1αf(tα)L^{-1}\{F(\alpha s)\} = \frac{1}{\alpha} f\left(\frac{t}{\alpha}\right)