Skip to content
Sahithyan's S3
1
Sahithyan's S3 — Differential Equations

Fourier Series

Used to decompose periodic non-sinusoidal waveforms into a sum of sinusoidal ones.

Suppose f(x)f(x) is a 2π2\pi-periodic function.

f(x)=a02+n=1[ancos(nx)+bnsin(nx)]f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \big[ a_n \cos\left(nx\right) + b_n \sin\left(nx\right) \big] ττ+Tcos(nx)dx=ττ+Tsin(nx)dx=0\int_{\tau}^{\tau + T} \cos(nx)\, \text{d}x = \int_{\tau}^{\tau + T} \sin(nx)\, \text{d}x = 0 ττ+Tsin(nx)cos(mx)dt=0\int_{\tau}^{\tau + T} \sin(nx) \cos(mx) \, \text{d}t = 0 ττ+Tsin(nx)sin(mx)dx={T2if n=m0otherwise\int_{\tau}^{\tau + T} \sin(nx) \sin(mx) \, \text{d}x = \begin{cases} \frac{T}{2} & \text{if } n = m \\ 0 & \text{otherwise} \end{cases} ττ+Tcos(nx)cos(mx)dx={T2if n=m0otherwise\int_{\tau}^{\tau + T} \cos(nx) \cos(mx) \, \text{d}x = \begin{cases} \frac{T}{2} & \text{if } n = m \\ 0 & \text{otherwise} \end{cases}

n0\forall n \geq 0.

an=2Tττ+Tf(x)cos(nx)dxa_n = \frac{2}{T} \int_{\tau}^{\tau + T} f(x)\cos(nx) \, \text{d}x bn=2Tττ+Tf(x)sin(nx)dxb_n = \frac{2}{T} \int_{\tau}^{\tau + T} f(x)\sin(nx)\, \text{d}x

a02\cfrac{a_0}{2} is the DC offset.

For any waveform, subtracting the DC offset results in a symmetrical waveform.

When a wave is symmetric about the y-axis.

f(x)=f(t)f(x) = f(-t)

The fourier series of an even waveform contains only cosine terms.

an=4Tττ+T/2f(x)cos(nx)dx    and    bn=0a_n = \frac{4}{T} \int_{\tau}^{\tau + T/2} f(x)\cos(nx) \, \text{d}x \;\;\text{and}\;\; b_n = 0

When a wave is symmetric about the origin.

f(x)=f(t)f(x) = -f(-t)

The fourier series of an odd waveform contains only sine terms.

a0=an=0    and    bn=4Tττ+T/2f(x)sin(nx)dxa_0 = a_n = 0 \;\;\text{and}\;\; b_n = \frac{4}{T} \int_{\tau}^{\tau + T/2} f(x)\sin(nx) \, \text{d}x

When a wave repeats itself with a reversal of sign after half a period.

f(x)=f(t+T2)=f(tT2)f(x) = -f\left(t + \frac{T}{2}\right) = -f\left(t - \frac{T}{2}\right)

The coefficients can be found by:

an={4Tττ+T/2f(x)cos(nx)dxif n is odd0if n is evena_n = \begin{cases} \frac{4}{T} \int_{\tau}^{\tau + T/2} f(x)\cos(nx) \, \text{d}x & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases} bn={4Tττ+T/2f(x)sin(nx)dxif n is odd0if n is evenb_n = \begin{cases} \frac{4}{T} \int_{\tau}^{\tau + T/2} f(x)\sin(nx) \, \text{d}x & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}

Half-wave symmetry can co-exist with odd symmetry or even symmetry. In that case:

an={8Tττ+T/4f(x)cos(nx)dxif n is odd0if n is evena_n = \begin{cases} \frac{8}{T} \int_{\tau}^{\tau + T/4} f(x)\cos(nx) \, \text{d}x & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases} bn={8Tττ+T/4f(x)sin(nx)dxif n is odd0if n is evenb_n = \begin{cases} \frac{8}{T} \int_{\tau}^{\tau + T/4} f(x)\sin(nx) \, \text{d}x & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}

Sufficient conditions for a real-valued, periodic function ff to be equal to its Fourier series at a point of continuity.

Suppose ff is a periodic function with period 2L2L. If:

  • Finite number of discontinuities
  • Finite number of maxima/minima
  • Absolutely integrable over a period

Then:

  • At continuity points, Fourier series = f(x)
  • At discontinuities, it converges to
f(c)+f(c+)2\frac{f(c^-)+f(c^+)}{2}

Suppose:

f(x)={ρ(x)0<x<cθ(x)c<x<2πf(x) = \begin{cases} \rho(x) & 0\lt x \lt c \\ \theta(x) & c \lt x \lt 2\pi \end{cases}

then compute coefficients by splitting integrals:

a0=1π[0cρ(x)dx+c2πθ(x)dx]an=1π[0cρ(x)cosnxdx+c2πθ(x)cosnxdx]bn=1π[0cρ(x)sinnxdx+c2πθ(x)sinnxdx]\begin{equation} \nonumber \begin{split} a_0 & =\frac{1}{\pi}\left[\int_0^cρ(x)\,dx+\int_c^{2\pi}θ(x)\,dx\right] \\ a_n & =\frac{1}{\pi}\left[\int_0^cρ(x)\cos nx\,dx+\int_c^{2\pi}θ(x)\cos nx\,dx\right] \\ b_n & =\frac{1}{\pi}\left[\int_0^cρ(x)\sin nx\,dx+\int_c^{2\pi}θ(x)\sin nx\,dx\right] \end{split} \end{equation}

Used when a function is defined only on (0,π). Extend the function to (−π,π) artificially.

The function is extended as an even function.

a0=2π0πf(x)dxan=2π0πf(x)cosnxdx\begin{equation} \nonumber \begin{split} a_0 & =\frac{2}{\pi}\int_0^\pi f(x)\,dx \\ a_n & =\frac{2}{\pi}\int_0^\pi f(x)\cos nx\,dx \end{split} \end{equation}

And bn=0b_n = 0.

The function is extended as an odd function.

bn=2π0πf(x)sinnxdxb_n=\frac{2}{\pi}\int_0^\pi f(x)\sin nx\,dx

And a0=an=0a_0 = a_n = 0.

For period 2l2l:

f(x)=a02+n=1[ancos(nπxl)+bnsin(nπxl)]f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left[a_n\cos\left(\frac{n\pi x}{l}\right)+b_n\sin\left(\frac{n\pi x}{l}\right)\right]

Coefficients:

a0=1lllf(x)dxa_0=\frac{1}{l}\int_{-l}^{l}f(x)\,dx an=1lllf(x)cos(nπxl)dxa_n=\frac{1}{l}\int_{-l}^{l}f(x)\cos\left(\frac{n\pi x}{l}\right)\,dx bn=1lllf(x)sin(nπxl)dxb_n=\frac{1}{l}\int_{-l}^{l}f(x)\sin\left(\frac{n\pi x}{l}\right)\,dx

A method to find higher order algebraic series, that is, for n>2n>2:

i=11in\sum_{i=1}^\infty \frac{1}{i^n}

For period 2c2c:

cc[f(x)]2dx=c[a022+n=1(an2+bn2)]\int_{-c}^{c}[f(x)]^2\,dx = c\left[\frac{a_0^2}{2}+\sum_{n=1}^{\infty}(a_n^2 + b_n^2)\right]

For period 2π:

f(x)=n=cneinxf(x)=\sum_{n=-\infty}^{\infty} c_n e^{-inx}

where

cn=12πππf(x)einxdxc_n=\frac{1}{2\pi}\int_{-\pi}^{\pi} f(x)e^{inx}\,dx

Here:

  • c0=a0/2c_0 = a_0/2
  • cn=(anibn)/2c_n = (a_n - ib_n)/2
  • cn=(an+ibn)/2c_{-n}=(a_n + ib_n)/2

General period 2l2l also included.