Skip to content
Sahithyan's S3
Sahithyan's S3 — Differential Equations

Dirac Delta Function

Consider the sequence of functions δn\delta_n defined as:

δn(x)={nif 12nx12n0otherwise\delta_n{(x)} = \begin{cases} n & \text{if } -\frac{1}{2n} \le x \le \frac{1}{2n} \\ 0 & \text{otherwise} \end{cases}

The Dirac delta function is the limit of δn\delta_n as nn approaches infinity.

δ=limnδn(x)={if x=00otherwise\delta = \lim_{n \to \infty} \delta_n(x) = \begin{cases} \infty & \text{if } x = 0 \\ 0 & \text{otherwise} \end{cases}

Properties

δ(x)dx=1\int_{-\infty}^{\infty} \delta(x) \, dx = 1 f(x)δ(xa)dx=f(a)\int_{-\infty}^{\infty} f(x)\delta(x-a) \, dx = f(a) L{δ(t)}=1\mathcal{L}\{\delta(t)\} = 1 L{δ(ta)}=eas\mathcal{L}\{\delta(t-a)\} = e^{-as}