Skip to content
Sahithyan's S3
1
Sahithyan's S3 — Applied Statistics

Variance Test

Used to compare the variability (spread) of two populations.

It checks whether the two population variances are equal or significantly different.

Typical use: • To test the assumption of equal variances before applying a pooled t-test. • To check if two machines, processes, or samples have similar consistency.

Let

σ12=variance of population 1,σ22=variance of population 2\sigma_1^2 = \text{variance of population 1} \quad , \quad \sigma_2^2 = \text{variance of population 2}

Then:

H0:σ12=σ22H_0 : \sigma_1^2 = \sigma_2^2

Alternative hypothesis depends on the problem:

H1:σ12σ22(two-tailed)H_1 : \sigma_1^2 \ne \sigma_2^2 \quad \text{(two-tailed)} H1:σ12>σ22(right-tailed)H_1 : \sigma_1^2 > \sigma_2^2 \quad \text{(right-tailed)} H1:σ12<σ22(left-tailed)H_1 : \sigma_1^2 < \sigma_2^2 \quad \text{(left-tailed)}

When μ\mu is unknown, xˉ\bar{x} is used as an estimate.

When sample size is small (n<30n \lt 30):

s2=1n1i=1n(xiμ)2s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2

When sample is large:

s2=1ni=1n(xiμ)2s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2

The test statistic is:

Small SampleLarge Sample
μ\mu is known(n1)s2σ2χn2\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_nns2σ2χn2\frac{ns^2}{\sigma^2} \sim \chi^2_n
μ\mu is unknown(n1)s2σ2χn12\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}ns2σ2χn12\frac{ns^2}{\sigma^2} \sim \chi^2_{n-1}