Sampling is the process of selecting a subset of individuals or items from a population to make statistical inferences about the whole. It helps researchers study large populations efficiently without examining every individual.
Advantages
Section titled “Advantages”- Feasibility – Studying an entire population is often impossible due to size or accessibility.
- Economy – Sampling reduces cost by limiting the number of observations.
- Speed – Results can be obtained faster than a census.
- Accuracy – Quick collection helps maintain data relevance and reliability.
- Conservation of Resources – Prevents exhausting data sources during measurement.
Disadvantages
Section titled “Disadvantages”- If sampling is biased, or not representative, or too small, the conclusion may not be valid and reliable.
- In research, the respondents to a study must have a common characteristics which is the basis of the study.
- If the population is very large and there are many sections and subsections, the sampling procedure becomes very complicated.
- If the researcher does not possess the necessary skill and technical knowhow in sampling procedure.
A Good Sample
Section titled “A Good Sample”A good sample must ensure both:
- accuracy: no bias
- precision: sample represents the population
Population
Section titled “Population”Hetrogenous
Section titled “Hetrogenous”A population with diverse characteristics or attributes among its members.
Hidden
Section titled “Hidden”For groups difficult to access:
- Use mixed sampling methods (snowball + purposive).
- Maintain confidentiality and anonymity.
- Gain community trust before data collection.
Probability Sampling Methods
Section titled “Probability Sampling Methods”Every unit in the population has a known, non-zero chance of being selected.
Simple Random Sampling
Section titled “Simple Random Sampling”Equal chance for all elements. With or without replacement.
Systematic Sampling
Section titled “Systematic Sampling”From a population of and a sample size of , select an item randomly in the first items, and then every th item after it.
Here is the sampling interval.
Simple to execute. Evenly spread samples.
Can be biased if hidden periodicity exists.
Stratified Sampling
Section titled “Stratified Sampling”Population is divided into strata (groups) based on shared characteristics. Inside each stratum, simple random sampling is performed and the results are combined.
Ensures representation of all groups. Provides greater accuracy when population is heterogeneous.
Cluster Sampling
Section titled “Cluster Sampling”Population divided into clusters. Each represnets a mini-population. Randomly select some clusters, and include all members within selected clusters.
Cost-effective for large geographic areas.
Less precise; may require larger sample to maintain accuracy.
Non-Probability Sampling Methods
Section titled “Non-Probability Sampling Methods”Units are chosen based on subjective judgment, convenience, or accessibility.
Quota Sampling
Section titled “Quota Sampling”Population divided into categories. Fixed number of elements of each category is surveyed.
May introduce bias.
Judgement Sampling
Section titled “Judgement Sampling”Aka. Purposive Sampling. Researcher selects sample based on knowledge or purpose. Used when expert choice is justified.
Convenience Sampling
Section titled “Convenience Sampling”Sample selected from easily available respondents. Quick but highly biased.
Snowball Sampling
Section titled “Snowball Sampling”Existing study subjects recruit future subjects from among their acquaintances. Useful for hidden populations.
Self-Selection Sampling
Section titled “Self-Selection Sampling”Individuals voluntarily participate. Not diverse. Biased.
Advanced / Repeated Sampling Designs
Section titled “Advanced / Repeated Sampling Designs”Theoretical Sampling
Section titled “Theoretical Sampling”Drawn to test specific hypotheses or theoretical ideas. Common in grounded theory research.
Repeat Sampling
Section titled “Repeat Sampling”Entire sampling process repeated at intervals (e.g., periodic surveys). Different samples at each iteration. Allows observation of changes over time but requires large samples.
Panel Surveys
Section titled “Panel Surveys”Aka. Cohort Surveys. Same group studied repeatedly over long periods (longitudinal studies). Issues: fatigue, attrition, and order effects.
Rotating Survey
Section titled “Rotating Survey”Sample is split into rotation groups. In each iteration, one rotation group is replaced with another. Mix of repeat and panel survey.
Sampling Design Process
Section titled “Sampling Design Process”Below components must be defined before sampling:
- Target Population
- Parameter of Interest
- Sampling Frame: list or source of all population elements.
- Sampling Method
- Sample Size
Nonresponse Issues
Section titled “Nonresponse Issues”Nonresponse occurs when selected subjects do not provide data.
Can be caused by:
- Refusal to respond
- Ineligibility
- Inability to locate respondent or contact