Skip to content
Sahithyan's S3
Sahithyan's S3 — Applied Statistics

Multinomial Distribution

Suppose the random variables X1,X2,,XkX_1, X_2, \ldots, X_k represent the number of times each outcome θ1,θ2,,θk\theta_1, \theta_2, \ldots, \theta_k occurs in nn independent trials.

These random variables are said to follow a multinomial distribution with parameters nn and p=(p1,p2,,pk)\mathbf{p} = (p_1, p_2, \ldots, p_k) iff the following conditions are met:

i=1kpi=1\sum_{i=1}^{k} p_i = 1 i=1kxi=n\sum_{i=1}^{k} x_i = n P(X1=x1,X2=x2,,Xk=xk)=n!x1!x2!xk!p1x1p2x2pkxkP(X_1 = x_1, X_2 = x_2, \ldots, X_k = x_k) = \frac{n!}{x_1! \, x_2! \, \cdots \, x_k!} \, p_1^{x_1} \, p_2^{x_2} \, \cdots \, p_k^{x_k} (nx1,x2,,xk)=n!x1!x2!xk!\binom{n}{x_1, x_2, \ldots, x_k}= \frac{n!}{x_1! \, x_2! \, \cdots \, x_k!}