Skip to content
Sahithyan's S3
Sahithyan's S3 — Applied Statistics

Gamma Distribution

Used to model the total waiting time until multiple events occur. Denoted by Gamma(α,β)\text{Gamma}(\alpha, \beta), where α>0\alpha > 0, β>0\beta > 0. Has the probably density function:

f(x;α,β)={xα1βαΓ(α)exp(xβ);  for x>00;  otherwisef(x;\alpha,\beta) = \begin{cases} \displaystyle \frac{x^{\alpha - 1}}{\beta^\alpha \Gamma(\alpha)} \exp\left( \frac{-x}{\beta} \right) &;\; \text{for } x > 0 \\ \displaystyle 0 &;\; \text{otherwise} \end{cases}

Here Γ\Gamma is the gamma function. A short revision on gamma function is included below.

Gamma function

τ(x)=0yx1eydy      for x>0\tau(x) = \int_0^\infty y^{x - 1} e^{-y} \, \text{d}y \;\;\; \text{for } x > 0

Recursive. Relates to the factorial function, for integer values.

τ(x)=(x1)!\tau(x) = (x - 1)!

τ(1)=1\tau(1) = 1 and τ(0.5)=π\tau(0.5) = \sqrt{\pi}.

Properties

Mean

μ=αβ\mu = \alpha \beta

Variance

σ2=αβ2\sigma^2 = \alpha \beta^2

Relation with Exponential Distribution

Gamma(1,1λ)Exp(λ)\text{Gamma}(1, \frac{1}{\lambda}) \equiv \text{Exp}(\lambda)

Relation with Chi-Squared Distribution

Gamma(k2,12)χ2(k)\text{Gamma}\left(\frac{k}{2}, \frac{1}{2}\right) \equiv \chi^2(k)

Relation with Normal Distribution

If XN(μ,σ2)X \sim N(\mu, \sigma^2) then:

Z22Gamma(12)\frac{Z^2}{2} \sim \text{Gamma}\left(\frac{1}{2}\right)